Basic usage

Robot Framework test cases are executed from the command line, and the end result is, by default, an `output file`_ in XML format and an HTML report_ and log_. After the execution, output files can be combined and otherwise `post-processed`__ with the Rebot tool.

Starting test execution


robot [options] data_sources
python|jython|ipy -m robot [options] data_sources
python|jython|ipy path/to/robot/ [options] data_sources
java -jar robotframework.jar [options] data_sources

Test execution is normally started using the robot `runner script`_. Alternatively it is possible to execute the installed `robot module`__ or `robot directory`__ directly using the selected interpreter. The final alternative is using the `standalone JAR distribution`_.


Versions prior to Robot Framework 3.0 did not have the robot script. Instead they had pybot, jybot and ipybot scripts that executed tests using Python, Jython and IronPython, respectively. These scripts are still installed, but the plan is to deprecate and remove them in the future.

Regardless of execution approach, the path (or paths) to the test data to be executed is given as an argument after the command. Additionally, different command line options can be used to alter the test execution or generated outputs in many ways.

Specifying test data to be executed

Robot Framework test cases are created in files__ and directories__, and they are executed by giving the path to the file or directory in question to the selected runner script. The path can be absolute or, more commonly, relative to the directory where tests are executed from. The given file or directory creates the top-level test suite, which gets its name, unless overridden with the --name option__, from the `file or directory name`__. Different execution possibilities are illustrated in the examples below. Note that in these examples, as well as in other examples in this section, only the robot script is used, but other execution approaches could be used similarly.

robot tests.robot
robot path/to/my_tests/
robot c:\robot\tests.robot

It is also possible to give paths to several test case files or directories at once, separated with spaces. In this case, Robot Framework creates the top-level test suite automatically, and the specified files and directories become its child test suites. The name of the created test suite is got from child suite names by catenating them together with an ampersand (&) and spaces. For example, the name of the top-level suite in the first example below is My Tests & Your Tests. These automatically created names are often quite long and complicated. In most cases, it is thus better to use the --name option for overriding it, as in the second example below:

robot my_tests.robot your_tests.robot
robot --name Example path/to/tests/pattern_*.robot

Using command line options

Robot Framework provides a number of command line options that can be used to control how test cases are executed and what outputs are generated. This section explains the option syntax, and what options actually exist. How they can be used is discussed elsewhere in this chapter.

Using options

When options are used, they must always be given between the runner script and the data sources. For example:

robot -L debug my_tests.robot
robot --include smoke --variable HOST: path/to/tests/

Short and long options

Options always have a long name, such as --name, and the most frequently needed options also have a short name, such as -N. In addition to that, long options can be shortened as long as they are unique. For example, –logle DEBUG works, while –lo log.html does not, because the former matches only --loglevel, but the latter matches several options. Short and shortened options are practical when executing test cases manually, but long options are recommended in start-up scripts, because they are easier to understand.

The long option format is case-insensitive, which facilitates writing option names in an easy-to-read format. For example, --SuiteStatLevel is equivalent to, but easier to read than --suitestatlevel.

Setting option values

Most of the options require a value, which is given after the option name. Both short and long options accept the value separated from the option name with a space, as in –include tag or -i tag. With long options, the separator can also be the equals sign, for example –include=tag, and with short options the separator can be omitted, as in -itag.

Some options can be specified several times. For example, –variable VAR1:value –variable VAR2:another sets two variables. If the options that take only one value are used several times, the value given last is effective.

Disabling options accepting no values

Options accepting no values can be disabled by using the same option again with no prefix added or dropped. The last option has precedence regardless of how many times options are used. For example, –dryrun –dryrun –nodryrun –nostatusrc –statusrc would not activate the dry-run mode and would return normal status rc.


Support for adding or dropping no prefix is a new feature in Robot Framework 2.9. In earlier versions options accepting no values could be disabled by using the exact same option again.

Simple patterns

Many command line options take arguments as simple patterns. These glob-like patterns are matched according to the following rules:

  • * is a wildcard matching any string, even an empty string.
  • ? is a wildcard matching any single character.
  • Unless noted otherwise, pattern matching is case, space, and underscore insensitive.


--test Example*     # Matches tests with name starting 'Example', case insensitively.
--include f??       # Matches tests with a tag that starts with 'f' or 'F' and is three characters long.

Tag patterns

Most tag related options accept arguments as tag patterns. They have all the same characteristics as simple patterns, but they also support AND, OR and NOT operators explained below. These operators can be used for combining two or more individual tags or patterns together.

AND or &

The whole pattern matches if all individual patterns match. AND and & are equivalent:

--include fooANDbar     # Matches tests containing tags 'foo' and 'bar'.
--exclude xx&yy&zz      # Matches tests containing tags 'xx', 'yy', and 'zz'.

The whole pattern matches if any individual pattern matches:

--include fooORbar      # Matches tests containing either tag 'foo' or tag 'bar'.
--exclude xxORyyORzz    # Matches tests containing any of tags 'xx', 'yy', or 'zz'.

The whole pattern matches if the pattern on the left side matches but the one on the right side does not. If used multiple times, none of the patterns after the first NOT must not match:

--include fooNOTbar     # Matches tests containing tag 'foo' but not tag 'bar'.
--exclude xxNOTyyNOTzz  # Matches tests containing tag 'xx' but not tag 'yy' or tag 'zz'.

Starting from Robot Framework 2.9 the pattern can also start with NOT in which case the pattern matches if the pattern after NOT does not match:

--include NOTfoo        # Matches tests not containing tag 'foo'
--include NOTfooANDbar  # Matches tests not containing tags 'foo' and 'bar'

The above operators can also be used together. The operator precedence, from highest to lowest, is AND, OR and NOT:

--include xANDyORz      # Matches tests containing either tags 'x' and 'y', or tag 'z'.
--include xORyNOTz      # Matches tests containing either tag 'x' or 'y', but not tag 'z'.
--include xNOTyANDz     # Matches tests containing tag 'x', but not tags 'y' and 'z'.

Although tag matching itself is case-insensitive, all operators are case-sensitive and must be written with upper case letters. If tags themselves happen to contain upper case AND, OR or NOT, they need to specified using lower case letters to avoid accidental operator usage:

--include port          # Matches tests containing tag 'port', case-insensitively
--include PORT          # Matches tests containing tag 'P' or 'T', case-insensitively
--exclude handoverORportNOTnotification


OR operator is new in Robot Framework 2.8.4.

ROBOT_OPTIONS and REBOT_OPTIONS environment variables

Environment variables ROBOT_OPTIONS and REBOT_OPTIONS can be used to specify default options for test execution and `result post-processing`__, respectively. The options and their values must be defined as a space separated list and they are placed in front of any explicit options on the command line. The main use case for these environment variables is setting global default values for certain options to avoid the need to repeat them every time tests are run or Rebot used.

export ROBOT_OPTIONS="--critical regression --tagdoc 'mytag:Example doc with spaces'"
robot tests.robot
export REBOT_OPTIONS="--reportbackground green:yellow:red"
rebot --name example output.xml


Support for ROBOT_OPTIONS and REBOT_OPTIONS environment variables was added in Robot Framework 2.8.2.

Possibility to have spaces in values by surrounding them in quotes is new in Robot Framework 2.9.2.

Test results

Command line output

The most visible output from test execution is the output displayed in the command line. All executed test suites and test cases, as well as their statuses, are shown there in real time. The example below shows the output from executing a simple test suite with only two test cases:

Example test suite
First test :: Possible test documentation                             | PASS |
Second test                                                           | FAIL |
Error message is displayed here
Example test suite                                                    | FAIL |
2 critical tests, 1 passed, 1 failed
2 tests total, 1 passed, 1 failed
Output:  /path/to/output.xml
Report:  /path/to/report.html
Log:     /path/to/log.html

Starting from Robot Framework 2.7, there is also a notification on the console whenever a top-level keyword in a test case ends. A green dot is used if a keyword passes and a red F if it fails. These markers are written to the end of line and they are overwritten by the test status when the test itself ends. Writing the markers is disabled if console output is redirected to a file.

Generated output files

The command line output is very limited, and separate output files are normally needed for investigating the test results. As the example above shows, three output files are generated by default. The first one is in XML format and contains all the information about test execution. The second is a higher-level report and the third is a more detailed log file. These files and other possible output files are discussed in more detail in the section `Different output files`_.

Return codes

Runner scripts communicate the overall test execution status to the system running them using return codes. When the execution starts successfully and no `critical test`_ fail, the return code is zero. All possible return codes are explained in the table below.

Possible return codes
RC Explanation
0 All critical tests passed.
1-249 Returned number of critical tests failed.
250 250 or more critical failures.
251 Help or version information printed.
252 Invalid test data or command line options.
253 Test execution stopped by user.
255 Unexpected internal error.

Return codes should always be easily available after the execution, which makes it easy to automatically determine the overall execution status. For example, in bash shell the return code is in special variable $?, and in Windows it is in %ERRORLEVEL% variable. If you use some external tool for running tests, consult its documentation for how to get the return code.

The return code can be set to 0 even if there are critical failures using the --NoStatusRC command line option. This might be useful, for example, in continuous integration servers where post-processing of results is needed before the overall status of test execution can be determined.


Same return codes are also used with Rebot_.

Errors and warnings during execution

During the test execution there can be unexpected problems like failing to import a library or a resource file or a keyword being deprecated__. Depending on the severity such problems are categorized as errors or warnings and they are written into the console (using the standard error stream), shown on a separate Test Execution Errors section in log files, and also written into Robot Framework’s own `system log`_. Normally these errors and warnings are generated by Robot Framework itself, but libraries can also log `errors and warnings`_. Example below illustrates how errors and warnings look like in the log file.

20090322 19:58:42.528 ERROR Error in file '/home/robot/tests.robot' in table 'Setting' in element on row 2: Resource file 'resource.robot' does not exist
20090322 19:58:43.931 WARN Keyword 'SomeLibrary.Example Keyword' is deprecated. Use keyword `Other Keyword` instead.

Escaping complicated characters

Because spaces are used for separating options from each other, it is problematic to use them in option values. Some options, such as --name, automatically convert underscores to spaces, but with others spaces must be escaped. Additionally, many special characters are complicated to use on the command line. Because escaping complicated characters with a backslash or quoting the values does not always work too well, Robot Framework has its own generic escaping mechanism. Another possibility is using argument files where options can be specified in the plain text format. Both of these mechanisms work when executing tests and when post-processing outputs, and also some of the external supporting tools have the same or similar capabilities.

In Robot Framework’s command line escaping mechanism, problematic characters are escaped with freely selected text. The command line option to use is --escape (-E), which takes an argument in the format what:with, where what is the name of the character to escape and with is the string to escape it with. Characters that can be escaped are listed in the table below:

Available escapes
Character Name to use Character Name to use
& amp ( paren1
apos ) paren2
@ at % percent
\ bslash | pipe
: colon ? quest
, comma quot
{ curly1 ; semic
} curly2 / slash
$ dollar space
! exclam [ square1
> gt ] square2
# hash * star
< lt

The following examples make the syntax more clear. In the first example, the metadata X gets the value Value with spaces, and in the second example variable ${VAR} is assigned to “Hello, world!”:

--escape space:_ --metadata X:Value_with_spaces
-E space:SP -E quot:QU -E comma:CO -E exclam:EX -v VAR:QUHelloCOSPworldEXQU

Note that all the given command line arguments, including paths to test data, are escaped. Escape character sequences thus need to be selected carefully.

Argument files

Argument files allow placing all or some command line options and arguments into an external file where they will be read. This avoids the problems with characters that are problematic on the command line. If lot of options or arguments are needed, argument files also prevent the command that is used on the command line growing too long.

Argument files are taken into use with --argumentfile (-A) option along with possible other command line options.

Argument file syntax

Argument files can contain both command line options and paths to the test data, one option or data source per line. Both short and long options are supported, but the latter are recommended because they are easier to understand. Argument files can contain any characters without escaping, but spaces in the beginning and end of lines are ignored. Additionally, empty lines and lines starting with a hash mark (#) are ignored:

--doc This is an example (where "special characters" are ok!)
--metadata X:Value with spaces
--variable VAR:Hello, world!
# This is a comment

In the above example the separator between options and their values is a single space. In Robot Framework 2.7.6 and newer it is possible to use either an equal sign (=) or any number of spaces. As an example, the following three lines are identical:

--name An Example
--name=An Example
--name       An Example

If argument files contain non-ASCII characters, they must be saved using UTF-8 encoding.

Using argument files

Argument files can be used either alone so that they contain all the options and paths to the test data, or along with other options and paths. When an argument file is used with other arguments, its contents are placed into the original list of arguments to the same place where the argument file option was. This means that options in argument files can override options before it, and its options can be overridden by options after it. It is possible to use --argumentfile option multiple times or even recursively:

robot --argumentfile all_arguments.robot
robot --name Example --argumentfile other_options_and_paths.robot
robot --argumentfile default_options.txt --name Example my_tests.robot
robot -A first.txt -A second.txt -A third.txt tests.robot

Reading argument files from standard input

Special argument file name STDIN can be used to read arguments from the standard input stream instead of a file. This can be useful when generating arguments with a script: | robot --argumentfile STDIN | robot --name Example --argumentfile STDIN tests.robot

Getting help and version information

Both when executing test cases and when post-processing outputs, it is possible to get command line help with the option --help (-h). These help texts have a short general overview and briefly explain the available command line options.

All runner scripts also support getting the version information with the option --version. This information also contains Python or Jython version and the platform type:

$ robot --version
Robot Framework 3.0 (Jython 2.7.0 on java1.7.0_45)

C:\>rebot --version
Rebot 3.0 (Python 2.7.10 on win32)

Creating start-up scripts

Test cases are often executed automatically by a continuous integration system or some other mechanism. In such cases, there is a need to have a script for starting the test execution, and possibly also for post-processing outputs somehow. Similar scripts are also useful when running tests manually, especially if a large number of command line options are needed or setting up the test environment is complicated.

In UNIX-like environments, shell scripts provide a simple but powerful mechanism for creating custom start-up scripts. Windows batch files can also be used, but they are more limited and often also more complicated. A platform-independent alternative is using Python or some other high-level programming language. Regardless of the language, it is recommended that long option names are used, because they are easier to understand than the short names.

In the first examples, the same web tests are executed with different browsers and the results combined afterwards. This is easy with shell scripts, as practically you just list the needed commands one after another:

robot --variable BROWSER:Firefox --name Firefox --log none --report none --output out/fx.xml login
robot --variable BROWSER:IE --name IE --log none --report none --output out/ie.xml login
rebot --name Login --outputdir out --output login.xml out/fx.xml out/ie.xml

Implementing the above example with Windows batch files is not very complicated, either. The most important thing to remember is that because robot and rebot scripts are implemented as batch files on Windows, call must be used when running them from another batch file. Otherwise execution would end when the first batch file is finished.

@echo off
call robot --variable BROWSER:Firefox --name Firefox --log none --report none --output out\fx.xml login
call robot --variable BROWSER:IE --name IE --log none --report none --output out\ie.xml login
call rebot --name Login --outputdir out --output login.xml out\fx.xml out\ie.xml

In the next examples, jar files under the lib directory are put into CLASSPATH before starting the test execution. In these examples, start-up scripts require that paths to the executed test data are given as arguments. It is also possible to use command line options freely, even though some options have already been set in the script. All this is relatively straight-forward using bash:


for jar in lib/*.jar; do
export CLASSPATH=$cp

robot --ouputdir /tmp/logs --suitestatlevel 2 $*

Implementing this using Windows batch files is slightly more complicated. The difficult part is setting the variable containing the needed JARs inside a For loop, because, for some reason, that is not possible without a helper function.

@echo off

set CP=.
for %%jar in (lib\*.jar) do (
    call :set_cp %%jar

robot --ouputdir c:\temp\logs --suitestatlevel 2 %*

goto :eof

:: Helper for setting variables inside a for loop
    set CP=%CP%;%1
goto :eof

Modifying Java startup parameters

Sometimes when using Jython there is need to alter the Java startup parameters. The most common use case is increasing the JVM maximum memory size as the default value may not be enough for creating reports and logs when outputs are very big. There are two easy ways to configure JVM options:

  1. Set JYTHON_OPTS environment variable. This can be done permanently in operating system level or per execution in a custom start-up script.

  2. Pass the needed Java parameters with -J option to Jython that will pass them forward to Java. This is especially easy when `executing installed robot module`_ directly:

    jython -J-Xmx1024m -m robot tests.robot

Debugging problems

A test case can fail because the system under test does not work correctly, in which case the test has found a bug, or because the test itself is buggy. The error message explaining the failure is shown on the command line output and in the `report file`_, and sometimes the error message alone is enough to pinpoint the problem. More often that not, however, `log files`_ are needed because they have also other log messages and they show which keyword actually failed.

When a failure is caused by the tested application, the error message and log messages ought to be enough to understand what caused it. If that is not the case, the test library does not provide `enough information`__ and needs to be enhanced. In this situation running the same test manually, if possible, may also reveal more information about the issue.

Failures caused by test cases themselves or by keywords they use can sometimes be hard to debug. If the error message, for example, tells that a keyword is used with wrong number of arguments fixing the problem is obviously easy, but if a keyword is missing or fails in unexpected way finding the root cause can be harder. The first place to look for more information is the execution errors section in the log file. For example, an error about a failed test library import may well explain why a test has failed due to a missing keyword.

If the log file does not provide enough information by default, it is possible to execute tests with a lower `log level`_. For example tracebacks showing where in the code the failure occurred are logged using the DEBUG level, and this information is invaluable when the problem is in an individual library keyword.

Logged tracebacks do not contain information about methods inside Robot Framework itself. If you suspect an error is caused by a bug in the framework, you can enable showing internal traces by setting environment variable ROBOT_INTERNAL_TRACES to any non-empty value. This functionality is new in Robot Framework 2.9.2.

If the log file still does not have enough information, it is a good idea to enable the syslog_ and see what information it provides. It is also possible to add some keywords to the test cases to see what is going on. Especially BuiltIn_ keywords Log and Log Variables are useful. If nothing else works, it is always possible to search help from `mailing lists`_ or elsewhere.

Using the Python debugger (pdb)

It is also possible to use the pdb module from the Python standard library to set a break point and interactively debug a running test. The typical way of invoking pdb by inserting

import pdb; pdb.set_trace()

at the location you want to break into debugger will not work correctly with Robot Framework, though, as the standard output stream is redirected during keyword execution. Instead, you can use the following:

import sys, pdb; pdb.Pdb(stdout=sys.__stdout__).set_trace()